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Abstract
We give first an approximation of the operator δh : f → δhf := h∗h̄ f −f ∗h̄ h

in terms of h̄2n, n � 0, where h ≡ h(p, q), (p, q) ∈ R
2n, is a Hamilton

function and ∗h̄ denotes the star product. The operator, which is the generator
of time translations in a ∗h̄-algebra, can be considered as a canonical extension
of the Liouville operator Lh : f → Lhf := {h, f }Poisson. Using this
operator we investigate the dynamics and trajectories of some examples with
a scheme that extends the Hamilton–Jacobi method for classical dynamics
to Moyal dynamics. The examples we have chosen are Hamiltonians with
a one-dimensional quartic potential and two-dimensional radially symmetric
nonrelativistic and relativistic Coulomb potentials, and the Hamiltonian for a
Schwarzschild metric. We further state a conjecture concerning an extension
of the Bohr–Sommerfeld formula for the calculation of the exact eigenvalues
for systems with classically periodic trajectories.

PACS numbers: 03.65.−w, 03.65.Ta, 04.60.Pp
Mathematics Subject Classification: 81S30

1. Introduction

Quantum mechanics in phase space has been considered under many different aspects. This
is very lucidly presented in the excellent monograph by Zachos et al [1] which also serves
as a very helpful basic reference in general. (For an extensive and continuously updated
database of references on this subject see also [2].) We shall here present an approach which
is a straightforward extension of classical phase space dynamics via an h̄-deformation in
the manner of Moyal together with an extension of the classical Hamilton–Jacobi method.
Following an established convention [3] we call this scheme Moyal dynamics and the related
trajectories (depending on parameters like time and angles) Moyal trajectories. For h̄ → 0
these trajectories go over in their classical correspondents. We shall confirm by the way
a remark made in [3] which states that Moyal trajectories and its corresponding classical
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trajectories do in general not coincide, thus contradicting a widespread erroneous assumption
which claims the contrary to be true. Our approach is not a ‘quantization’ which uses a
Hilbert space [4, 5]. We shall, however, on the basis of our approach, present in section 6 a
generalization of the Bohr–Sommerfeld approximation of the eigenvalues of stationary states
which we believe to deliver exact energy eigenvalues in a Schrödinger picture. In section 7 we
shortly connect our approach with conventional quantum mechanics via Wigner transforms
(adding nothing genuinely new).

Now, our approach is as follows. Let h(p, q) be a time-independent Hamilton function
of a finite degree of freedom. We define the star product via Fourier transformation [4, 5] by
a(p, q) ∗h̄ b(p, q) := a(p + ih̄∂q/2, q − ih̄∂p/2)b(p, q), where (p + ih̄∂q/2, q − ih̄∂p/2) ≡
(p1 + ih̄∂q1/2, p2 + ih̄∂q2/2, . . . , q1 − ih̄∂p1/2, q2 − ih̄∂p2/2, . . .). The map defined by

f (p, q) → δhf (p, q) := (i/h̄)[h(p, q) ∗h̄ f (p, q) − f (p, q) ∗h̄ h(p, q)] (1)

shall be called a δh-Moyal operator. In mathematical lingo δh is an inner derivation on a
noncommutative algebra of functions of (p, q) with a star product. That is, δh(a ∗h̄ b) =
(δha) ∗h̄ b + a ∗h̄ (δhb). Due to this property the maps exp(tδh), t ∈ R, form a group of
automorphisms on a Moyal algebra of functions of (p, q). This group represents the time
evolution of the dynamical system determined by the Hamilton function h(p, q). That is, the
time evolution of a function f (p, q) is f (p, q) → f (p, q, t) ≡ exp(tδh)(f (p, q)). This leads
to the equation

(∂t − δh)f (p, q, t) = 0, (2)

which will be the starting point of our program. We note first that δh splits up into a sum
Lh+h̄2�h,�h = �h,0+h̄2�h,1+· · · , where Lh is the Liouville operator. This operator (which is
an outer derivation on an algebra of functions of (p, q) with the ordinary commutative product)
generates the classical time evolution of the system determined by h(p, q). Thus, (2) reads for
h̄ = 0

(∂t − Lh)f (p, q, t) = 0. (3)

To prepare the investigation of relation (2), we shall first consider (3). As an example we take
the Hamilton function h ≡ (

p2
r + p2

φ

/
r2

)/
2m0 + a/r . The corresponding Liouville operator

is

Lh = pφ∂φ/m0r
2 + pr∂r/m0 +

(
p2

φ − ar
)
∂pr

/
r3. (4)

Substituting

r = u, pr =
√

−p2
φ

/
u2 + 2am0/u + 2m0E, E ≡ h(p, q), (5)

one gets

Lh = pφ∂φ/m0u
2 +

√
−p2

φ + 2m0u(a + uE) ∂u. (6)

To solve (3) we let f (pr, pφ, r, φ) = exp(F ), where F ≡ λt −μφ +w(u,E) = const (having
taken into regard that φ is cyclic and that any function of pφ is a constant of motion). That
is, 0 = dF = ∂tF dt + ∂φF dφ + ∂uF du ≡ λ dt − μ dφ + ∂uw du. To calculate du/dt =
−∂tF/∂uF, we have to set λ = 1 and μ = 0, and to calculate du/dφ = −∂φF/∂uF, we have
to set λ = 0 and μ = 1. Thus,

du/dt = −1/∂uw =
√

−p2
φ

/
u2 + 2am0/u + 2m0E/m0u, (7)

du/dφ = (pφ/m0u
2)/∂uw = (u/pφ)

√
−p2

φ

/
u2 + 2am0/u + 2m0E. (8)

2



J. Phys. A: Math. Theor. 43 (2010) 025302 G Braunss

Integration yields

t − t0 =
∫

m0u du
/√

−p2
φ

/
u2 + 2am0/u + 2m0E, (9)

φ − φ0 = −pφ

∫
du

/(
u

√
−p2

φ

/
u2 + 2am0/u + 2m0E

)
. (10)

This is exactly what follows from the Hamilton–Jacobi equation (cf [6])

S ≡ −Et + pφφ +
∫ √

2m0(E − a/u) − p2
φ

/
u2 du = const. (11)

by differentiation w.r.t. E and pφ respectively. We shall return to the just considered
Hamiltonian as well as to its relativistic pendants in sections 4, 5 and 6. In the following
section we shall first investigate the case of a one-dimensional quartic potential in connection
with equation (2).

Remark 1. A different approach to a quantum Hamilton–Jacobi scheme with regard to the
Schrödinger equation has been proposed in [7].

2. One-dimensional quartic potential

For the Hamilton function h4 ≡ h(p, q) = p/2 + q4/4, the δh-operator reads

δh = p∂q − q3∂p + h̄2q∂3
p

/
4 ≡ Lh + h̄2q∂3

p

/
4. (12)

By substituting q = u, p =
√

2E − u4/2, E ≡ h4, we get with f (p, q) = exp(F ), F ≡
t + w(u,E) = const, and from (2)

∂uw = −1/
√

2E − u4/2 + h̄2G,

G ≡ u[6(∂Ew)2 + (4E − u4)(∂Ew)3 + 6∂2
Ew + 3(4E − u4)∂Ew∂Ew2 + (4E − u4)∂Ew3]/8.

(13)

It follows then from du/dt = −1/∂uw that

t = t0 −
∫ q

q0

∂uw du = t0 − w = t0 +
∫ q

q0

du(1/
√

2E − u4/2 − h̄2G). (14)

There seems to be no way by which a rigorous solution of the differential equation (13) could
be found. (Setting w(u,E) = log(f (u,E)) one gets a linear partial differential equation

∂uf = −f/
√

2E − u4/2 − (h̄2/8)u
[
6∂2

Ef + (4E − u4)∂3
Ef

]
,

which, too, offers no (at least easily to be seen) rigorous solution.) To solve (13), we shall
therefore use the following successive approximation:

∂uw
(0) = −1/

√
2E − u4/2,

∂uw
(n) = −1/

√
2E − u4/2 − h̄2G(n−1), n � 1,

(15)

where G(n−1) ≡ G(u,E,w(n−1)) is determined by equation (13). The time-dependent
trajectories u(t) ≡ q(t) are then obtained by integration of du(n)/dt = −1/∂uw

(n−1). Writing
for the moment u ≡ u(0), we have

G(0)(u, E) = u/(512E2
√

4E − u4){
√

2u[(−2u2 + 45u4 − 132E)
√

E

+ 6(5u4 − 16E)E1/4F(u/
√

2E1/4) + 3(u4 − 4E)F(u/
√

2E1/4)2] +
√

4 − u4/E

× E1/4[−30u2E3/4 − 3
√

E(2u2 − 15u4 + 20E)F(u/
√

2E1/4)

+ 3(5u4 − 12E)E1/4F(u/
√

2E1/4)2 + (u4 − 4E)(u/
√

2E1/4)3]}, (16)

where F(u/
√

2E1/4) = EllipticF[arcsin(u/
√

2E1/4),−1] = −w(0)(u, E).

3
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Inserting for u the corresponding classical expression u(0)(t) = (4E)1/4 cn[(4E)1/4t],
cn ≡ cosinus amplitudinis with module k = 1/

√
2, we get as a first approximation

du(1)(t)/dt = du(0)(t)/dt/[1 − h̄2 du(0)(t)/dtG(0)(u(0)(t), E) + O(h̄4]

= du(0)(t)/dt[1 + h̄2 du(0)(t)/dtG(0)(u(0)(t, E))] + O(h̄4),

where du(0)(t)/dt = ±
√

2E − u(0)(t)4/2.
Having no strict a priori estimate for the quality of this approximation one has, according to

the above relation for each numerical calculation, to check whether h̄2G du(0)(t)/dt < 1. (This
criterion, which depends on the values for E, has to be applied mutatis mutandis to all examples
to follow.) By letting (see section 6) E ≡ E(n) ≈ [3�(3/4)/(

√
π8�(5/4))2h̄π(n+1/2)]3/4 it

follows from numerical calculations that roughly n � 105, that is, values E � 1.152 × 10−25,
satisfy this criterion. This agrees with what could have been expected, meaning that for lower
energies one needs approximations of higher order. Another way to check the approximation
is to calculate the difference h(p(n)(t), q(n)(t)) − h(p, q). Numerical calculations show that
despite higher oscillations of the approximate energy values h(p(n)(t), q(n)(t)) over the interval
of periodicity, the mean values remain very close to the energy values for h̄ = 0, and that with
increasing energy values classical and (approximate) Moyal trajectories differ increasingly
less.

Remark 2. Using the above-defined approximation means that all higher approximations
u(n)(t) have the same periodicity as u(0)(t). The question is whether this would also be true
for an exact solution. We can only answer this question with regard to the results in a previous
paper [4] where numerical solutions for the quartic potential had been calculated by piecewise
analytic continuation. The values obtained in this way had indeed shown that the periodicity
for h̄ �= 0 and h̄ = 0 is the same. A further argument which supports the assumption that
the periodicity remains unchanged is that necessarily |q| �

√
2E1/4 for any h̄ as can be seen

from equation (13). Figures 1a, b and c show differences of coordinates between classical and
Moyal trajectories for a quartic potential.

3. Expansion of δh in terms of h̄2n, n � 0

Let us now turn to the problem of calculating δhf, h(p, q) = T (p) + V (q), where (p, q) is
any 2N-tupel of canonical phase space coordinates and V (q) is not necessarily a polynomial.
Replacing f (p, q) by its Fourier transform it suffices to calculate the action of δh on the
corresponding Fourier character. That is,

exp[−i(px + qy)]δh exp[i(px + qy)]

= h(p + ih̄y/2, q − ih̄x/2) − h(p − ih̄y/2, q − +h̄x/2). (17)

Expanding this expression w.r.t. h̄ and replacing the xj and yj by −i∂pj
and −i∂qj

respectively
(taking if necessary into consideration a symmetrization procedure [9]) one obtains a series in
terms of h̄2n, n � 0, which breaks off if h(p, q) is a polynomial. A short calculation yields the
following expression (δ(a, b) = 1 if a = b and = 0 if a �= b is the Kronecker symbol):

δhf = Lhf +
∑
n�1

h̄2n

2n+1∑
j1,k1,...,jN ,kN�0

δ(j1 + k1 + · · · + jN + kN, 2n + 1)

× ij1+k1+···+jN +kN−1(−1)k1+···+kN
(
∂j1
p1

∂k1
q1

. . . ∂jN

pN
∂kN

qN
h
)

× (
∂k1
p1

∂j1
q1

. . . ∂kN

pN
∂jN

qN
f

)/
(4nj1!k1! · · · jN !kN !). (18)

4
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14 16 18 20
n

5. 10 10

1. 10 9

1.5 10 9

q En 10 n 2Ev

(a)

20 10 10 20

5. 10 9

1. 10 8

1.5 10 8

2. 10 8

(b)

20 10 10 20

2. 10 18

4. 10 18

6. 10 18

8. 10 18

1. 10 17

(c)

Figure 1. One-dimensional quartic potential. (a) Mean difference of q(h̄ = 0) − q(h̄ > 0)

over interval of periodicity. (b) q(h̄ = 0, t) − q(h̄ �= 0, t), E = 106Ev, q(h̄ = 0, 0) = 0.0503.
(c) q(h̄ = 0, t) − q(h̄ �= 0, t), E = 1010 eV, q(h̄ = 0, 0) = 0.503.

Obviously δh is a generalization of the Liouville operator Lh the latter given by

Lhf =
1∑

j1,k1,...,jN ,kN �0

δ(j1 + k1 + · · · + jN + kN, 1)ij1+k1+···+jN +kN−1(−1)k1+···+kN

× (
∂j1
p1

∂k1
q1

. . . ∂jN

pN
∂kN

qN
h
)(

∂k1
p1

∂j1
q1

. . . ∂kN

pN
∂jN

qN
f

)/
(4j1!k1! · · · jN !kN !). (19)

Approximations of δh up to powers h̄2n shall be denoted by δ
(n)
h unless h(p, q) is polynomial

in p and q in which case we write δh.

5
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As an example we choose again h ≡ (
p2

r + p2
φ

/
r2

)
/2m0 + a/r . With relations (18) and

(19) one gets up to terms with h̄2n, n � 2,

δ
(1)
h f (pr, pφ, r, φ) = {

pφ∂φ/m0r
2 + pr∂r/m0 +

(
p2

φ + am0r
)
∂pr

/
m0r

3

+ (h̄2/4m0r
4)

[−r∂pr
− 3pφ∂2

pr
∂φ +

(−4p2
φ

/
m0r + a

)
∂3
pr

]}
f (pr, pφ, r, φ).

Note that δ
(1)
h f (pφ) = 0. It is easily proven that generally δ

(n)
h f (pφ) = 0 for all n � 0 as

could have been expected (this can generally be shown to be true for all radially symmetric
Hamilton functions considered in the following).

We shall come back to this example and its relativistic pendants in the following sections.
In all examples with radially symmetric Hamilton functions considered below we shall restrict
ourselves to approximations of first order.

Remark 3. Let (p1, . . . , pN, q1, . . . , qN) ∈ R
2N be a set of Cartesian phase space coordinates

for which (j, k ∈ {1, . . . , N});
(i) {pj , qk}M = −ih̄δjk, {pj , pk}M = {qj , qk}M = 0, {a, b}M ≡ {a ∗h̄ b − b ∗h̄ a}.
Let further (π1, . . . , πN, σ1, . . . , σN) ≡ (pr, pφ1 , . . . , pφN−1 , r, φ1, . . . , φN−1) be a
corresponding set of spherical phase space coordinates. Using the Weyl relations together
with Fourier transforms it can be shown (cf [4, 5] and appendix) that relations (i) imply

(ii) {πj , σk}M = −ih̄δjk, {πj , πk}M = {σj , σk}M = 0.

4. Nonrelativistic and relativistic radially symmetric Coulomb potential

For the Hamilton function h ≡ (
p2

r + p2
φ

/
r2

)
/2m0 + a/r we get with f (pr, pφ, r, φ) =

exp(F ), F ≡ λt − μφ + w(u,E) = const, from relation (2)
(
R ≡ −p2

φ + 2m0u(−a + uE)
)

∂uw = −(λm0u + μpφ/u)/
√

R + h̄2G + O(h̄4), (20)

G ≡ 3μpφ∂Ew/4m0u
3
√

R) +
{
3m0u

2
(
2p2

φ + am0u + pφ

√
R μ

)(
∂Ew2 + ∂2

Ew
)

− (
2p2

φ + am0u
)[

p2
φ + 2m0u(a − uE)

](
∂Ew3 + ∂Ew∂2

Ew + ∂3
Ew

)}/
4m3

0u
7. (21)

Following the scheme outlined above for classical evolutions one has with λ = 1, μ = 0,

dt/du = −Ft/Fu = −m0u/
√

R − h̄2G + O(h̄4), (22)

and with λ = 0, μ = 1,

dφ/du = −Fφ/Fu = −pφ/u
√

R + h̄2G + O(h̄4). (23)

This yields with equations (20) and (21)

t =
∫

(m0u/
√

R − h̄2G) du + O(h̄4), (24)

φ =
∫

(−pφ/u
√

R + h̄2G) du + O(h̄4). (25)

Remark 4. We might have also considered an arbitrary potential V (r) in the above calculations

by substituting pr →
√

−p2
φ

/
r2 + 2m0[E + V (r)].

6
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Straightforward calculation (writing now u = r) with a first approximation of w(r,E) =
w0(r, E) = arcsin

[(
am0r + p2

φ

)/
a

√
m0

(
a2m0 + 2p2

φE
)]

leads to the following expression

for G:

G ≡ G(a,m0, pφ, E,μ, h̄)(r) = h̄2
{
p3

φ

(
p2

φ + am0r
)

× [
6pφ

(
2p4

φ + a2m2
0r

2(1 + μ) + m0p
2
φr(3a + 2rEμ)

)
− (−14p6

φ + a3m3
0r

3(−1 + 3μ) + m0p
2
φr(−35a + 6rE(4 + μ)

)
+ am2

0p
2
φr2(6rE(2 + μ) + a(−16 + 3μ))

]}/√
R. (26)

Note that G(a,m0, pφ, E,μ, h̄)(r) does not depend on λ.
The function G(a,m0, pφ, E,μ, h̄)(r) can be exactly integrated w.r.t. r yielding the

following expression:

Int G ≡ Int G(a,m0, pφ, E,μ, h̄)(r) =
∫

G(a,m0, pφ, E,μ, h̄)(r) dr

= −h̄2
{
12p6

φ

√
−p2

φ + 2m0r(−a + rE)
[
4
(
p2

φ + am0r
)3

+ m0r
2
(
3p2

φ + 4am0r
)(

a2m0 + 2p2
φE

)
μ

)
+ pφ

(
p2

φ + 2m0r(a − rE)
)(

56p10
φ + 3a5m5

0r
5(13 + 21μ)

− 4m0p
8
φr(−28a + rE(1 + 9μ)) − 2m2

0p
6
φr2(9a2(−3 + μ)

+ 2arE(−5 + 3μ) + 6r2E2(1 + 9μ)) + a3m4
0p

2
φr4(−a(13 + 21μ)

+ 8rE(17 + 33μ)) + 2am3
0p

4
φr3(a2(5 − 3μ)

− 16arE(1 + 3μ) + 2r2E2(29 + 69μ))
]

− 3m3
0r

6
(
a2m0 + 2p2

φE
)2

√
−p2

φ + 2m0r(−a + rE)

× (
2p2

φE(1 + 9μ) + a2m0(13 + 21μ)
)

× arcsin
[(

p2
φ + am0r

)/
r

√
m0

(
a2m0 + 2p2

φE
)]))}/

× 96m3
0p

2
φr6

(
a2m0 + 2p2

φE
)3

√
−p2

φ + 2m0r(−a + rE). (27)

A closer look at

Int G ≡ h̄2 Int G0
/[

96m3
0p

2
φr6(a2m0 + 2p2

φE
)3

√
−p2

φ + 2m0r(−a + rE)
]

shows that the integral diverges for E → −a2m0
/

2p2
φ (as well as for r → (

a ±√
a2 + 2p2

φE
/
m0

)/
2E

)
. Convergence of our approximation requires h̄2 <

(
a2m0 + 2p2

φE
)3

.

This means that in particular the case E = −a2m0/2p2
φ (this is classically a circle) needs

a separate investigation. We can directly deal with this case obtaining a surprising result.
Calculating exp(φ)δhf (r, E)) exp(−φ) via Fourier transform yields pr∂rf (r, E) + K where
K has the following property:

K0 ≡ lim
pr→0

K =
∑
j�0

h̄2j cj (r, pφ,m0, a)∂
j

Ef (r, E).

Now, E → Ec implies pr = i
(
p2

φ − am0r
)/

pφ which means that we must set p2
φ = am0r ,

that is, pr = 0 (otherwise pr would be imaginary). The determining equation for
w(r,E) = − log[f (r, e)] thus reads

∂rw = −m0 exp(w)K/pr.

7
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Hence,

dr/dφ = −1/∂rw → 0

if E → Ec and consequently pr → 0. This holds strictly for arbitrary h̄. In other words
r(φ) = rc for all φ and arbitrary h̄. We shall say that the case E = Ec is h̄-stable. Note
that in this exceptional example the classical and Moyal trajectories do indeed coincide (see
figures 2c, 2d, 2e).

As to numerical examples we shall restrict ourselves to calculations of first order for
scattering (deflection) angles. Figures 2a and b show differences of scattering angles and
radii, respectively between classical and Moyal trajectories for a nonrelativistic Coulomb
potential.

Now, given a function X(a,m0, c, pφ,E, r, φ) in the relativistic case with h ≡ a/r +

c

√
c2m2

0 + p2
r + p2

φ

/
r2 one obtains its nonrelativistic correspondent as follows:

NRX(a,m0, pφ, E, r, φ) := lim
c→∞ X(a,m0, c, pφ,E + c2m0, r, φ). (28)

(Note that h − c2m0 = a/r +
(
p2

r + p2
φ

/
r2

)/
2m0 + O(1/c).) As an example consider (cf [9])

the relativistic classical radius for c2p2
φ > a2:

r0(a,m0, c, pφ,E)(φ)

= p2
φ

/[−aE +
√

−c2m2
0

(
c2p2

φ − a2
)

+ p2
φE2 cos

(√
1 − a2

/
c2p2

φφ
)]

. (29)

Its nonrelativistic correspondent is

r0(a,m0, pφ, E)(φ) ≡ NRr0(a,m0, c, pφ,E)(φ)

= lim
c→∞ r0(a,m0, c, pφ, c2m0 + E)(φ)

= p2
φ

/[−am0 +
√

m0
(
a2m0 + 2p2

φE
)

cos φ
]
, (30)

which is exactly what one gets in the classical nonrelativistic Kepler problem.
For the relativistic case we basically proceed as in the nonrelativistic case. That

is, we set f (pr, pφ, r, φ) = exp(F ), F = λt − μφ + w. Writing for short R(r) ≡√
−c2

(
c2m2

0 + p2
φ

)
+ (a − rE)2 one gets

∂rw = [−(a − rE)λ + c2pφμ/r

+ h̄2(a − rE)G(a,m0, c, pφ,E,μ)(r)]/cR(r) + O(h̄4). (31)

From dφ/dr = −Fr/Fφ = ∂rw, λ = 0, μ = 1, it follows

φ(a,m0, c, pφ,E, h̄)(r) = φ0(a, c,m0, pφ, E)(r)

+ h̄2
∫ r

rmin

Kr(a,m0, c, pφ,E)(x) dx + O(h̄4), (32)

where Kr(a,m0, c, pφ,E)(r) ≡ (a − rE)G(a,m0, c, pφ,E,μ = 1)(r)/cR(r) and
φ0(a, c,m0, pφ, E)(r) has to be calculated from r0(a, c,m0, pφ, E)(φ). For example, for
c2p2

φ > a2 one has

φ0(a, c,m0, pφ, E)(∞) = arccos
[
aE/c

√
c2m2

0

(
a2 − c2p2

φ

)
+ p2

φE2
]/√

1 − a2
/
c2p2

φ. (33)

rmin is the classical minimal value r0(a, c,m0, pφ, E)(0).
From dr/dφ = −Fφ/Fr, λ = 0, μ = 1 it follows after a short calculation

r(a,m0, c.pφ, E)(φ) = r0(a,m0, c, pφ,E)(φ)

− h̄2
∫

Kφ(a, c,m0, pφ, E)(φ) dφ + O(h̄4). (34)

8
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Figure 2. Nonrelativistic Coulomb potential. (a) Difference of deflection angles (scattering
proton–proton). �χ(En)/χ(a, m0, pφ, En, h̄) ≡ χ(a,m0, pφ, En, h̄ = 0)/χ(a,m0, pφ,

En, h̄) − 1. (b) Mean difference of radii: �r(En) = ∫ φ∞
φ−∞ [r(1)(a, m0, pφ, En, h̄)(φ)/r(0)(a, m0,

pφ, En, h̄ = 0)(φ) − 1] dφ/(2φ∞); φ∞ ≡ φ(r = ∞); (a = ae, m0 = mProton, pφ =
10−23) (cgs). (c, d, e) Plots for some elliptic cases with different eccentricities ε. (c) Plots
of r(0)(±a, m0, pφ,E < 0)(φ) (h̄ = 0). (d) Plots of r(1)(a < 0, m0, pφ,E < 0)(φ) (h̄ �=
0). (e) Plots of r(1)(a > 0,m0, pφ, E < 0)(φ) (h̄ �= 0)(a = ae, m0 = mProton, pφ =√

m0(1 − ε2)/(2|E|), E = −10−3 eV) (cgs).
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In order to have escaping trajectories one must require E2 > c4m2
0 (otherwise φ0(∞)

would assume complex values, except in the cases a = m0 = 0). Note that the
velocity for r = ∞ both for the nonrelativistic and relativistic case (as well as for a

Schwarzschild metric) is equal to its classical correspondent v∞ = c

√
E2 − c4m2

0

/
E.

This can be seen from dr/dt = −Ft/Fr = −∂rw, λ = 1, μ = 0, and the expression
one gets for G(a,m0, c, pφ,E, r, μ = 0)|r→∞. In contrast to the nonrelativistic case
G(a,m0, c, pφ,E, r, μ = 0) and Kφ(a, c,m0, pφ, E)(φ) (which can be formally integrated)
are very lengthy and unwieldy, and we omit therefore to list these expressions. (It is
by the way no problem also to calculate cross sections using the values obtained for
φ(a,m0, c, pφ,E)(∞) and (cf [6]) the relations dσ/d� = ρ(χ)|dρ)/dχ |/ sin(χ) d�,

where d� is the infinitesinal spherical angle and ρ is determined by pφ = m0ρv∞.
The expression dρ/dχ = 1/(dχ/dρ) can be calculated from dχ/dρ = ±2 dφ∞/dρ =
±2(dφ∞/dpφ) (dpφ/dρ) = ±2m0v∞ dφ∞/dpφ.) Figures 3a, b and c illustrate some results
for a relativistic Coulomb potential.

The case m0 = 0, a = 0 delivers a somewhat strange result as shown in the following
expression for a first-order approximation of the radius:

r(a = 0,m0 = 0, c, pφ,E)(φ) = cpφ/(E cos φ) − Eh̄2[(192φ − 144 cos(2φ)

− 108 cos(4φ) − 48 cos(6φ) − 9 cos(8φ) + 252 sin(2φ) + 132 sin(4φ)

+ 44 sin(6φ) + 6 sin(8φ)]
/(

3072p2
φ

)
. (35)

The nonclassical part represents a spiral from r(φ = 0) = 0 to ir(φ = ∞) = ∞ (see
section 2, figure 3(c)).

In the numerical examples below we have left h̄ numerically unevaluated in order to
show more distinctly the approximation. We have chosen values for a = ae ≡ e2 where
e is the elementary electric charge and a = ag ≡ −κ m1m2 where κ is the gravitational
constant; m1,m2 are chosen as me,mP or mN, that is, the masses of e = electron and e+ =
positron, P = proton and N = neutron, respectively. All units are in c.g.s. or eV. Recall that

h̄ ≈ 1.058 × 10−26 cm2 g s−1. A
e→ B or A

g→ B means particle A moves toward the target
particle B. The subscripts e or g mean interaction according to a = ae or a = ag respectively.
The deflection angle is given as χ = χ0 + �χ h̄2 where χ0 is the classical part. We list
below only the parts �χr h̄2 and �χnr h̄2 where the indices r and nr stand for ‘relativistic’ and
‘nonrelativistic’ respectively. The numerical values for a, pϕ and E have been chosen such
that c2 p2

ϕ > a2, E2 > c4 m2
0 and that numerically �χ h̄2 
 1 which is a necessary condition

for a sufficiently good approximation. The extreme smallness of the absolute numerical values
of some of the parameters makes numerical calculations sometimes not sufficiently reliable.
To circumvent this one can use a scaling

{a,m0, c, pϕ, pr, r,rS} → {ka, km, c/
√

k, k3/2pϕ,
√

kpr, kr, krS}
(rS is the Schwarschild radius, see the following section). This scaling leaves the energy,
that is, the radially symmetric Hamiltonians unchanged and multiplies the radii by the factor
k. In addition the quotient ν = a2

/
p2

ϕc2 which determines for the relativistic Coulomb
potential the type of trajectory—ν < 1 or > 1 or = 1 yields elliptic or hyperbolic or parabolic
trajectories respectively—remains type-invariant. This is also true for the first approximations
of ∂rw0(r, E, . . .) ≡ ϕh̄=0(r, E, . . .) for Coulomb potentials. The terms GCoulomb in a second
approximation ∂rw1(r, E, . . .) = ∂rw0(r, E, . . .) + h̄2GCoulomb + O(h̄4) transform according
to GCoulomb → GCoulomb/k4 in the nonrelativistic and GCoulomb → GCoulomb/k9/2 in the
relativistic case, meaning that invariance of these terms requires a scaling h̄ → k2h̄ and
h̄ → k9/4h̄ respectively. The difference between both cases is due to the fact that in the

10
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Figure 3. Relativistic Coulomb potential. (a) Difference of deflection angles (scattering proton–
proton). (b) �χ(En)/χ(a,m0, pφ, En, h̄) ≡ χ(a,m0, pφ, En, h̄ = 0)/χ(a,m0, pφ, En, h̄) − 1.
Trajectory of the difference of radii.
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nonrelativistic case GCoulomb contains only derivatives of w0(r, E, . . .) w.r.t. E, whereas in
the relativistic case derivatives of w0(r, E, . . .) w.r.t. r and E appear. The case of a radially
symmetric Schwarzschild metric which will be treated in the following section behaves exactly
like the case of the radially symmetric relativistic Coulomb potential as regards the above
defined scaling for h̄.

In the tableau below we have listed a few values for deflection angles (see also section 9
for the figures at the end of the manuscript).

�χnr �χr pφ E

(1) e
e→ e : 6.4270 × 1039 h̄2 −9.1847 × 1046 h̄2 10−20 108 eV

(2) P
e→ P : 6.4270 × 1039 h̄2 1.8728 × 1048 h̄2 10−20 1010 eV

(3) P
e→ e : 6.4270 × 1039 h̄2 3.5525 × 1047 h̄2 10−20 1010 eV

(4) N
g→ N : 1.2139 × 1026 h̄2 1.5187 × 1048 h̄2 10−20 1010 eV

Although the values for �χnr in cases (1)–(3) are equal to each other this is not true for
their classical parts; their values are 7.727 82×10−11, 3.328 86×10−10 and −3.328 86×10−10

respectively.
We conclude with the h̄-correction of the deflection angle for the space probe Cassini in

a fly-by of the Saturn moon Enceladus on March 2008 with v∞ ≈ 15 km s−1 at a distance of
52 km: |�χ | = 11.673 × 10−15 h̄2.

5. Moyal dynamics in a Schwarzschild metric

The Hamiltonian for such a metric (with motions in a plane) reads

hS = c

√
(1 − rS/r)

(
c2m2 + p2

φ

/
r2 + p2

r (1 − rS/r)
)
, (36)

where rS = 2κM/c2 is the Schwarzschild (or gravitational) radius of the central mass M, and
κ denotes the gravitational constant. Proceeding as in the previous sections one obtains

dt/dr = r2E(−1 + h̄2G)/c(r − rS)

√
E2r4 − c2r

(
c2m2

0r
2 + p2

φ

)
(r − rS) + O(h̄4), (37)

dφ/dr = [c2pφ(r − rS) − h̄2r3EG]/

c(r − rS)

√
E2r4 − c2r

(
c2m2

0r
2 + p2

φ

)
(r − rS) + O(h̄4). (38)

For h̄ = 0 these are exactly the relations one gets with the Hamilton–Jacobi scheme. For the
function wλ,μ(r, E, . . .) we get

∂wλ,μ(r, E, . . .)/∂r = {−r3E[h̄2G(r,E,μ, . . .) − λ] + μc2pφ(r − rS)}/
c
√

r(r − rS)

√
c2(rS − r)

(
p2

φ + c2m2
0r

2
)

+ r3E2. (39)

Thus,

dr/dφ = [1 + h̄2r2EG/c2pφ(r − rS)]
√

E2r4 − c2r
(
c2m2

0r
2 + p2

φ

)
(r − rS)/cpφ + O(h̄4),

(40)

dr/dt = c(rS − r)(1 + h̄2G)

√
E2r4 − c2r

(
c2m2

0r
2 + p2

φ

)
(r − rS)/r2E + O(h̄4). (41)

12
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We shall consider here only the case m0 = 0. That is,

∂wλ,μ(r, E, . . .)/∂r = {−r3E[h̄2G(r,E,μ, . . .) − λ] + μc2pφ(r − rS)}/c
√

r(r − rS)
√

R,

where R ≡ c2(rS − r)p2
φ + r3E2. There are two, essentially different, cases:

(a) 81r2
S > 12ω2, ω ≡ pφc/E,

(b) 81r2
S = 12ω2.

In the first case, R = r(r − γ )[(r − α)2 + β), where

α = −[341/3ω2 + (36ω4σ 2)1/3]/4(81ω2σ)1/3, σ = −9rS +
√

−12 + 81(rS/ω)2,

β = −[6ω2 + (18ω4σ 2)1/3]/[(2
√

3)5ω2σ ]1/3, γ = [231/3ω2 + (2ω4σ ]1/3/(36ω2σ)1/3.

Denoting by F(ψ, k) = ∫ ψ

0 dx/
√

1 − k sin2(x) the elliptic integral of first kind and by ‘am’
the elliptic amplitude function (that is, u = F(ψ, k) → ψ = am(u, k)) one obtains for
E2 > 12p2

φc2
/

81r2
s

φ0(r) ≡ φh̄=0(r) = pφcF[2 arctan
√

B(r − α)/Ar, k], (42)

r0(φ) ≡ rh̄=0(φ) = −γB/{−B + A tanh[am(pφc
√

ABφ, k)]}, (43)

where

A =
√

(γ − α)2 + β2/γ, B =
√

α2 + β2γ,

k =
√

1/2 + [(α(γ − α) + β2]/2γ 2.

It is easily seen that r → ∞ if φ → F[arctanh(B/A), k]/pφc
√

AB, meaning that for
E2 > 12p2

φc2
/

81r2
s we have escaping trajectories. That is, a trajectory in this case begins at

infinity moving toward the black hole (circle with radius rS), then either moves inside or stays
outside (depending on the energy E) of the black hole and escapes thereafter to infinity. To
give an example, let rS be the Schwarzschild radius of a neutron and pφ = 10−60 (cgs). Then
the trajectory circulates twice inside the black hole for E = 5 × 1014 eV and circulates twice
outside the black hole for E = 5 × 1013 eV. For the Schwarzschild radius of a neutron star
the trajectory is a hyperbola which either intersects the black hole or stays away from it.

For E2 = 12p2
φc2

/
81r2

s , one has R = (r(r + 3rS)(r − 3rS/2)2, which yields

φ0(r) = (2E/33/2) log{[2
√

3r(r + 3rS) + 3rS − 4r]/(3rS − 2r)}, (44)

r0(φ) = r0(−φ) = (3rS/2)[1 + exp(33/2φ/2E)]2/[1 − 4 exp(33/2φ/2E) + exp(33/2φ/E)].

(45)

The allowed intervals for φ are D+ = (φ∞,∞] and D− = [−∞, −φ∞), where φ∞ =
(2E/33/2) log(2+

√
3). That is, ±φ∞ are the angles with which the trajectories arrive at infinity.

Because of r0(φ) = r0(−φ), it does not matter which interval we consider. Take for example
D+. Then the trajectory of an object with rest mass m = 0 starts at infinity (φ = φ∞ is a pole
of first order), moves toward a circle with radius 3rS/2 which it approaches asymptotically
(φ → ∞). The following list of values for r0(φ), E = 1013 eV, for 80 � φ � 100 in steps of
1 provides an example:

(1.500 02rS, 1.500 02rS, 1.500 01rS, 1.500 01rS, 1.500 01rS,

1.500 01rS, 1.500 01rS, 1.500 01rS, 1.500 01rS, 1.5rS, 1.5rS,

1.5rS, 1.5rS, 1.5rS, 1.5rS, 1.5rS, 1.5rS, 1.5rS, 1.5rS, 1.5rS, 1.5rS).

13
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Using the foregoing relations it follows with a first approximation for G(r,E, . . .) that

limr→∞ dr/dt = −c

√
E2 − c4m2

0

/
E. That is, we obtain the same expression as for a

relativistic Coulomb potential.
A first approximation for φ(r) is

φ(r) = φh̄=0(r) − (h̄2E/c)

∫
r3K(r,E, . . .)/

(r − rS)

√
c2(rS − r)

(
p2

φ + c2m2
0r

2
)

+ r3E2 d r, (46)

where K(r,E, . . .) = G(r,E,wh̄=0(r, E, . . .), . . .) = G(r,E, φh̄=0(r), . . .). For r(φ) a first
approximation reads

r(φ) = r0(φ) +
(
h̄2E

/
c3p2

φ

) ∫
r3K(r,E, . . .) dφ0/dr

×
√

c2(rS − r)
(
p2

φ + c2m2
0r

2
)

+ r3E2/(r − rS) dr. (47)

The time dependence is given by

r(t) = r0(t) + (h̄2c/E)

∫
dt/dr0(r − rS)K(r, E, . . .)

×
√

c2(rS − r)
(
p2

φ + c2m2
0r

2
)

+ r3E2/r2 dr. (48)

As in the case of a Coulomb potential the integrals have to be numerically evaluated. A more
detailed study of Moyal trajectories in a Schwarzschild metric shall be given in a paper to
follow.

6. Eigenvalues: a generalization of the Bohr–Sommerfeld formula

For a classical Hamilton system h(p, q), (p, q) ∈ R
2, with periodic motion the Bohr–

Sommerfeld formula (cf [10])∮
p dq = 2πh̄(n + 1/2) (49)

provides a quasiclassical approximation of eigenvalues En for n � 1. For example for
h(p, q) = p2/2 + q4/4 this formula delivers∮

p dq =
∫ √

2E1/4

−√
2E1/4

√
2E − u4/2 du = √

π(8/3)E3/4�(5/4)/�(3/4). (50)

That is, En ∼ n4/3, n � 1. We conjecture that (51) holds exactly if the classical expression
p ≡ dq/dt is replaced by the corresponding expression in a Moyal algebra as obtained from
the extended Hamilton–Jacobi relations given above. For the quartic potential we get from
relation (13)

ph̄ = −1/∂uw =
√

2E − u4/2/(1 − h̄2
√

2E − u4/2 G). (51)

Using the approximation G(0) defined by (15) and replacing the integration by a sum with
steps j/

√
2E1/4,−M � j � M , we obtain

Ih̄ ≡
∮

ph̄ dq ≈ b0E
3/4+ −h̄2E3/4

M∑
j=−M

aj/[1− h̄2(bj1E
−1+ bj2E

−5/4+ bj3E
−3/2)] + O(h̄4)

≈ α0E
3/4 − h̄2(α1E

−1/4 + α2E
−1/2 + α3E

−3/4) + O(h̄4). (52)

14
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For example for M = 40 one has

2πh̄(n + 1/2) ≈ 3.489 52E3/4
n − h̄2

(
0.167 07E−3/4

n

− 0.556 90E−1/2
n + 0.412 34E−1/4

n

)
+ O(h̄4). (53)

Although the foregoing calculations are rather crude approximations, numerical tests up to the
order 1020 for n show that En/En+1 tends to 1 (alternatively En+1 −En tends to 0) if n tends to
∞. (Note that (54) has three real solutions for En. The correct values are those which increase
if n grows, the other ones decrease with growing n.)

Remark 5. For a radially symmetric potential with closed trajectories the Bohr–Sommerfeld
formula reads

∮
pr dr = 2πh̄(nr + 1/2), where nr is the radial quantum number (cf [9]).

Remark 6. The extension of the Bohr–Sommerfeld quantization, namely the calculation of
eigenvalues for discrete simple spectra has been treated over the past 25 years by many authors
in different approaches; we refer to [11] for an extensive discussion and references.

7. Eigenfunctions and eigenvalues of δh

It is well known that for the linear oscillator h(p, q) = (p2 + q2)/2 the Wigner transforms are

Wm,n(p, q) :=
√

2/h̄π

∫
R

exp(2ipy/h̄)ψm(q + y)ψn(q − y) dy,

where the ψn, n ∈ N0, are orthonormal eigenfunctions of the Hamilton operator of the linear
oscillator and form an o.n. set of eigenfunctions of δh with eigenvalues ωm,n = h̄(m − n)

(these are actually frequencies). We are going to show that generally the functions

Wf,g(p, q) := (2/h̄π)n/2
∫

R
n

exp(2ipy/h̄)f (q + y)g(q − y) dy, (p, q) ∈ R
2n,

form an o.n. set of eigenfunctions of δh, h(p, q) = T (p) + V (q), (p, q) ∈ R
2n, provided f

and g belong to an o.n. set of eigenfunctions of H = T (ih̄∂u) + V (u), u = (u1, . . . , un) ∈ R
n.

The eigenvalues of δh are then ωf,g := Ef −Eg , where Hf = Ef f, H̄g = Egg. We consider
first the one-dimensional case. Let T (p) = ∫

R
FT (z) exp(−i zp) dz and

Kf,g(p, q, y, η) := exp(2py/h̄)f (q + η)g(q − η),

and let Ff and Fg denote the Fourier transforms of f and g respectively. Then a short
calculation yields∫

R

(∫
R

δT (p)Kf,g(p, q, y − x, y) dp

)
dy

=
∫

R

FT (z)

[∫
R

( ∫
R

δexp(−ipz)Kf,g(p, q, y − x, y) dp

]
dz

= πh̄

[
g(q − x)

∫
R

T (h̄u) exp[−i(q + x)u]Ff (u) du

+ f (q + x)

∫
R

T (−h̄v) exp[−i(q − x)v]Fg(v) dv

]

= πh̄[−g(q − x)T (ih̄∂q+x)f (q + x) + f (q + x)T (−ih̄∂q−x)g(q − x)].

We have further∫
R

(∫
δV (q)Kf,g(p, q, y − x, y) dp

)
dy = πh̄f (q + x)g(q − x)[V (q − x) − V (q + x)]
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and ∫
R

(∫
Kf,g(p, q, y − x, y) dp

)
dy = πh̄f (q + x)g(q − x).

Thus,∫
R

(∫
(δT (p)+V (q) − ωf,g)Kf,g(p, q, y − x, y) dp

)
dy/πh̄f (q + x)

= −[T (ih̄∂q+xf (q + x)]/f (q + x) − V (q + x)

+ [T (−ih̄∂q−xg(q − x)]/g(q − x) + V (q − x).

Hence, if H := T (ih̄∂u)+V (u) and H̄ := T (−ih̄∂u)+V (u), and if f and g satisfy Hf = Ef f

and H̄g = Egg respectively then (δh(p,q) − ωf,g)Wf,g(p, q) = 0, ωf,g = Ef − Eg. The
extension to more dimensions (using Cartesian coordinates for convenience) is obvious. As
an example we choose the relativistic radially symmetric Hamilton function h(p, q) =
c

√
c2m2

0 +
(
p2

1 + p2
2

)/
2m0 + V

(√
q2

1 + q2
2

)(=c

√
c2m2

0 +
(
p2

r + p2
φ

/
r2

)/
2m0 + V (r)

)
. The

corresponding Hamilton operator is then H = H̄ = c

√
c2m2

0 − (h̄2/2m0)�u + V (|u|).

Remark 7. Replacing in the above calculations g by its complex conjugate ḡ the second
eigenvalue equation reads Hḡ + V ḡ = Eḡḡ.

Remark 8. The role of the Wigner function in connection with the Schrödinger equation
has been studied in numerous papers (see for example [12, 13] and [14]). So we do
not claim to have provided in this section something genuinely new. We just wanted to
reiterate the connection between the eigenvalues and eigenfunctions of the operator δh and the
corresponding expressions of the associated Schrödinger equation.

8. Conclusion

Moyal dynamics as treated here looks at a first glance like an extension of classical dynamics
determined by a parameter h̄. That is, trajectories in Moyal dynamics, in short: Moyal
trajectories, appear in terms of r(=radius), φ(=angle) and t(=time) like ‘classical’ objects.
This is in a strict sense not correct. Although we did not work with a ‘Moyal quantization’,
namely a Hilbert space representation of a Moyal algebra [5, 8], our setup is based on
a noncommutative product, namely the the star product ∗h̄, which provides the basis for
Moyal dynamics in phase space. There is however a connection between both aspects as
demonstrated by the above-presented generalization of the Bohr–Sommerfeld formula, which
by conjecture delivers the exact eigenvalues of stationary states in the Schrödinger picture.
This is somewhat also expressed by the h̄-stability of circular motions, meaning that for
a (nonrelativistic) radially symmetric Coulomb potential the classical trajectory of a circle(
E = −m0a

2
/

2p2
φ

)
coincides (up to the scaling factor h̄) with the corresponding Moyal

trajectory (this seems so far the only nontrivial example in which both trajectories coincide).
It remains to be shown whether trajectories in a Hilbert space representation and in the scheme
considered here are comparable. It is strange (and we agree here with the authors of [3]) that
very little has been published on the subject presented in this paper, whereas there exists an
abundance of literature dealing with quantum mechanics (in a strict sense) in phase space as
outlined by the papers of Moyal, Groenewold, Wigner et al [1].
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9. Figures

The underlying data of all figures have been chosen such that the above-explained (somewhat
ad hoc) convergence criterion h̄2G < 1 (with G being the relevant term in the corresponding
expansion in powers of h̄2n, n � 1) is satisfied. Physical numerical values (as far as they are
used) are given in the cgs sytem. All figures show what could have been expected with the
exception of figures 2(d) and (e) which look rather strange for higher eccentricities ε. Whereas
figure 2(c) (h̄ = 0) looks the same for positive and negative values of a, this is obviously not
the case for h̄ �= 0. However (see section 4), and this is confirmed by numerical calculations,
one has in any case limε→0

[
r(1)
ε (φ + φ0) − r(0)

ε (φ)
] = 0 for all φ (where φ0 is a possible

constant phase depending on the sign of a). In figure 3(b) we had due to intrinsic numerical
problems of this particular example to use a scaling in order to show the typical characteristics,
so that numerical values for physical parameters have been omitted.
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Appendix

For two dimensions the connections between Cartesian and radially symmetric phase space
coordinates w.r.t. a Moyal quantization can be established in a more direct way. Note first
that {p1, p2, q1, q2} = {pr cos(φ) − pφ sin(φ)/r, pr sin(φ) + pφ cos(φ)/r, r cos(φ), r sin(φ)}
and {pr, pφ, r, cos(φ), sin(φ)} = {

(p1q1 + p2q2)
/√

q2
1 + q2

2 , p2q1 − p1q2,

√
q2

1 + q2
2 , q1

/
√

q2
1 + q2

2 , q2
/√

q2
1 + q2

2

}
.

Define then the operators

OM(pr) = pr − i(h̄/2)(∂rq1∂q1 + ∂rq2∂q2) = pr − i(h̄/2)(cos(φ)∂q1 + sin(φ)∂q2),

OM(pφ) = pφ − i(h̄/2)(∂φq1∂q1 + ∂φq2∂q2) = pφ − i(h̄/2)(− sin(φ)∂q1 + cos(φ)∂q2),

OM(r) = r + i(h̄/2)(∂pr
p1∂p1 + ∂pr

p2∂p2) = r + i(h̄/2)(cos(φ)∂p1 + sin(φ)∂p2),

OM(φ) = φ + i(h̄/2)(∂φp1∂p1 + ∂φp2∂p2) = r + i(h̄/2r)(− sin(φ)∂p1 + cos(φ)∂p2).

Inserting now for {pr, pφ, r, cos(φ), sin(φ)} the above expressions in terms of p1, p2, q1, q2

and taking into regard that {pj , pk}M = {qj , qk}M = 0 and {pj , qk}M = −ih̄δjk , one gets
after a short calculation

{OM(pr),OM(r)}M = {OM(pφ),OM(φ)}M = −ih̄

{OM(pr),OM(pφ)}M = {OM(pφ),OM(r)}M =
{OM(pr),OM(φ}M = {OM(r),OM(φ)}M = 0.

That is, we can set (as could have been expected from the foregoing definitions)

OM(pr) = pr − ih̄∂r/2, OM(pφ) = pφ − ih̄∂φ/2,

OM(r) = r + ih̄∂pr
/2, OM(φ) = φ + ih̄∂pφ

/2.
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